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TRANSONIC AERODYNAMIC CHARACTERISTICS OF A TAILLESS
FIXED-WING SUPERSONIC TRANSPORT MODEL

By Edward J. Ray and Robert T. Taylor
Langley Research Center

SUMMARY
21692

An investigation has been made in the Langley high-speed 7- by 10-foot tunnel to
determine the effects of wing planform and twist and camber on the aerodynamic charac-
teristics of a tailless fixed-wing supersonic transport model throughout a Mach number
range of 0.40 to 1.14. To determine these effects, three wing planforms with the same
aspect ratios were investigated with and without twist and camber. The three wing plan-
forms were a modified delta having an ogee-shaped leading edge, a delta, and a trapezoid.
All three plane wings were equipped with trailing-edge elevons to delermine the control
effectiveness of these devices.

The results of the present study indicated that the wing planform differences had
little effect on the aerodynamic center variations with Mach number and on the trimmed
lift coefficients at reasonable landing attitudes. The wing twist and camber effects, how-
ever, were significant and the resuils indicated that the {rapezoid configuration. which
had the highest values of pitching-moment coefficient at zero lift, would exhibit the high-
est trimmed lift coefficients of the twisted and cambered wing configurations near reason-
able landing attitudes.

The static lateral data indicated that the twisted and cambered wing configurations
had positive directional stability and positive effective dihedral for all Mach numbers of
the investigation. The directional stability, however, of the twisted and cambered delta

.

and trapezoid configurations was considerably greater than the directional stability of the

Qo

twisted and cambered ogee configurations.
INTRODUCTION

The National Aeronautics and Space Administration has investigated a number of
configurations which may be suitable for a commercial supersonic transport aircraft.
These investigations have covered a variety of design concepts, including both fixed-wing
and variable-sweep wing arrangements. Results from investigations to determine the
aerodynamic characteristics of fixed-wing supersonic transport models may be found in



references 1 to 17. References 18 to 30 contain results obtained from investigations to'
determine the aerodynamic characteristics of supersonic transport models having
variable-sweep wings or variable-sweep auxiliary wing panels.

The purpose of the present investigation was to determine the subsonic and tran-
sonic aerodynamic characteristics of a fixed-wing, tailless, supersonic transport model
designed for cruise at a Mach number of 2.2. Three wing shapes, an ogee wing, a delta
wing, and a trapezoid wing, of the same aspect ratio and thickness ratio distribution were
tested with and without twist and camber to determine the effects of wing planform and
wing twist and camber on the aerodynamic characteristics of the model. In addition, the
plane wing configurations were provided with flap-type trailing-edge elevons to evaluate
the control effectiveness of the three configurations. This paper presents the longitudinal
and lateral results which were obtained for these configurations throughout the Mach num-
ber range of 0.40 to 1.14.

The study of this model has been extended to supersonic Mach numbers and the data
resulting from these investigations are presented in references 31 and 32. The investi-
gation described in reference 31 was conducted at a Mach number of 2,20 to determine
the aerodynamic characteristics of the model at cruise speed. Reference 32 presents
longitudinal and lateral data for the Mach number range of 1.80 to 2.86 and includes the
effects of two forebody modifications.

SYMBOLS

The longitudinal data are referred to the wind-axis system and the lateral data are
referred to the body-axis system. The moment center for all configurations is located
on the model reference line at a point 61.77 percent of the body length behind the nose.
(See figs. 1(a), (b), and (c).)

The units used for the physical quantities defined in this paper are given both in the
U.S. Customary Units and in the International System of Units (SI). Factors relating the
two systems are given in reference 33.

A aspect ratio

b span of wing, 19.25 inches (48.90 centimeters)
c local wing chord, inches (centimeters)

I mean aerodynamic chord, inches (centimeters)




reference chord of wing, 12.00 inches (30.48 centimeters)

Internal axial force
qsS

nacelle internal-axial-force coefficient,
drag coefficient, Drag
qS
induced drag coefficient
lift coefficient, Lift
aS
lift-curve slope near CL =0, acL/’aa, per degree

effective change in lift coefficient caused by unit angular change in ele-
von deflection, 8CL/86, per degree

Rolling moment
gSb

rolling-moment coefficient,

effective dihedral parameter, 8Cl/8[3, per degree

Pitching moment

itching-moment coefficient,
P s qScref

pitching-moment coefficient at C; =0

longitudinal stability parameter near Cy; =0

Yawing moment
qSb

yawing-moment coefficient,

directional stability parameter, BCn/BB, per degree

Side force

side-force coefficient,
qs

side-force parameter, SCY/B,B, per degree
maximum lift-drag ratio
Mach number

dynamic pressure, pounds force/ foot2 (newtons/ meterz)



t/c

Wing notations:

Ogee I

Delta I
4

Reynolds number

wing reference area (includes body intercept), 1.665 foot2
(0.1547 meter2)

thickness-chord ratio

distance from wing leading edge parallel to fuselage center line, inches
(centimeters)

spanwise station, measured perpendicular from model center line,
inches (centimeters)

vertical distance from wing reference plane to mean camber line, inches
(centimeters)

angle of attack, degrees

control-surface-effectiveness parameter at Cy, = 0, effective change in
wing angle of attack caused by unit angular change in elevon deflec-

tion, C C
LG/ La

sideslip angle, degrees

inboard and outboard elevon deflection, negative trailing edge up
(measured from wing chord plane), degrees

inboard elevon deflection, negative trailing edge up (measured from wing
chord plane), degrees

outboard elevon deflection, negative trailing edge up (measured from
wing chord plane), degrees

angle of wing twist, degrees

plane ogee wing planform

plane delta wing planform




Trapezdid I plane trapezoid wing planform

Ogee I twisted and cambered ogee wing

Delta II twisted and cambered delta wing

Trapezoid II twisted and cambered trapezoid wing

Ogee III twisted and cambered ogee wing, modified
MODELS

The three wing planforms used in this investigation were a modified delta having an
ogee-shaped leading edge, a trapezoid, and a delta. (See figs. 1(a), (b), and (c).) The
aspect ratio of the wings was 1.55. The wings without twist and camber will be referred
to as Ogee I, Trapezoid I, and Delta I, and the twisted and cambered wings will be denoted
as Ogee II, Trapezoid II, and Delta II. The Ogee II wing was modified further to provide
additional wing twist and camber outboard of the nacelles, near the leading edge, and this
wing will be referred to as the Ogee III wing.

Longitudinal and lateral control was provided by plain, flap-type, trailing-edge ele-
vons locaied inboard and outboard of the nacelles. Only the plane wings were equipped
with elevons. The elevons were attached to the wings with brackets which enabled the
elevons to be deflected to angles of 0°, -5°, or -10°. The location and dimensions of the
elevons for each planform are shown in figures 1(a), (b), and (c).

The two-dimensional inlet nacelles were fitted to the lower surface of the plane
wings and positioned as shown in figures 1(a), (b), and (c). The nacelles were located on
the twisted and cambered wings so that the center lines of the nacelles were 3.65 inches
(9.27 cm) from the fuselage center line. Defails of the nacelle arc shown in figure 1(d).

A comparison of the various wing planforms is shown in figure 1(e). As shown in
this figure, there was no difference in the projected planform area between the twisted
and cambered and the plane delta wings or between the twisted and cambered and the plane
trapezoid wings; however, the planform areas of the plane and the twisted and cambered
ogee wings differed slightly. The wetted wing area, excluding the area covered by the
nacelles, is listed for each planform in table I. An approximate quartic equation for the
curved portion of the leading edge of the twisted and cambered ogee wing is shown in
figure 1(f).

Ratios of wing thickness to wing chord, as shown in figure 2, varied from 3 percent
at the root to 2 percent at the tip. Circular-arc airfoil sections were utilized for all the



wings. The twisted and cambered wings were designed for a lift coefficient of 0.1 at a
Mach number of 2.20. (See ref. 34.) Airfoil sections of the twisted and cambered wings
were sheared so that the trailing edge of each wing was straight. The twist and camber
distributions of the Ogee II, Delta II, and Trapezoid I wings are shown in figure 3. The
leading edge of the Ogee II wing was modified to form the Ogee Il wing by rolling down
the leading edge of the outer 45 percent of the wing semispan an additional 0.10 inch
(0.25 cm). A typical section and the twist distribution illustrating this modification are
presented in figure 4.

The cross-sectional area distribution of the model, excluding the cavities of the
engine nacelles, with the twisted and cambered ogee wings is shown in figure 5 and photo-
graphs of this model are presented as figure 6.

TESTS AND CORRECTIONS

The investigation was made in the Langley high-speed 7- by 10-foot tunnel at Mach
numbers of 0.40, 0.60, 0.80, 0.90, 0.98, 1.02, and 1.14. The Reynolds number based on
the reference chord of the wing c¢..¢ and on the average temperature at each Mach num-
ber is shown in the following table:

M R
0.40 2.25 x 106
.60 3.10
.80 3.70
.90 3.90
.94 3.95
.98 4.00
1.02 4.05
1.14 4.10

The model was sting supported and the forces and moments were measured with an
internally mounted, six-component, strain-gage balance. The angle-of-attack range
varied throughout the Mach number range because of the load limits of the balance. At
the low Mach numbers, the angle-of-attack range was generally about from -2° to 200
and at the higher Mach numbers the range extended about from 0° to 14°. Lateral sta-
bility data were obtained at all Mach numbers throughout a sideslip-angle range of -12° to
17° at an angle of attack of 0° for the plane ogee configuration and at sideslip angles of 00
and +5° for all the twisted and cambered wing configurations. To insure a turbulent
boundary layer, 1/16-inch-wide transition strips of no. 60 carborundum grains were




applied mear the leading edge of the wings, 1 inch (2.54 cm) behind the body nose, on the
vertical tail, and outside and inside the engine nacelles.

The angles of attack and sideslip have been corrected for sting and balance deflec-
tion under load. Jet-boundary and blockage corrections are negligible for the open-slot
tunnel configuration and therefore were not applied to the data. The internal skin friction
of the two nacelles was calculated and the measured axial force was corrected at each
Mach number by the internal axial-force coefficient C Ai in the amount shown in the
following table:

M (:[&i
0.40 0.00141
.60 .00132
.80 .00125
.90 .00122
.94 .00122
.98 .00121
1.02 .00119
1.14 .00116

Nacelle base pressure measurements were made by using a manifold placed around
the solid cross section of the engine nacelle base. The data were corrected to corre-
spond to a condition of free-stream static pressure at the solid portion of the nacelle base
and at the base of the fuselage.

Some problems were encountered with regard to the absolute level of the drag
measurements on the plane delta and plane trapezoid wings. Although the exact magni-
tude of the resultant errors in minimum drag cannot, of course, be established, compari-
sons with subsonic theory based on flat-plate skin friction (ref. 35) and thickness-chord
ratio (ref. 36) indicated that the measured minimum drag coefficients for the plane delta
and trapezoid configurations were slightly high. In view of this, the drag coefficients for
the plane trapezoid wing and plane delta wing configurations were reduced by 0.0010 and
0.0007, respectively, in an attempt to reduce the crrors associated with the drag measure-
ment problems encountered on these wings. Because of this somewhat arbitrary correc-
tion no comparisons of the subsonic or transonic lift-drag ratios have been made. No
problems were encountered and no drag adjustments have been made, however, for the
plane ogee wing, all the cambered and twisted wings, and all the supersonic data repro-
duced from references 31 and 32.



PRESENTATION OF RESULTS N

The basic longitudinal results of this investigation are presented in figures 7 to 15
and some of these results are summarized in figures 16 to 23. Lateral data are pre-
sented in figures 24 to 25. An outline of the figure content is as follows:

Figure
Effect of inboard elevon deflection on longitudinal aerodynamic characteristics
of plane ogee wing configuration at Mach numbers from 0.40t0 1,14 . . . . . . 7
Effect of inboard and outboard elevon deflection on longitudinal aerodynamic
characteristics of plane ogee wing configuration at Mach numbers from

0.40to 1.14 . . . . . . .. e e e e e e e e 8
Effect of twist and camber on longitudinal aerodynamic characteristics of

ogee wing configurations at Mach numbers from 0.40to1.14 . . . . . . . . . . 9
Effect of inboard elevon deflection on longitudinal aerodynamic characteristics

of plane delta wing configuration at Mach numbers from 0.40to 1.14 . . . . . 10

Effect of inboard and outboard elevon deflection on longitudinal aerodynamic
characteristics of plane delta wing configuration at Mach numbers from

040to 1.14 . . . . . . L e e e e e e e e 11
Effect of twist and camber on longitudinal aerodynamic characteristics of

delta wing configurations at Mach numbers from 0.40to 1.14. . . . . . . . . . 12
Effect of inboard elevon deflection on longitudinal aerodynamic characteristics

of plane trapezoid wing configuration at Mach numbers from 0.40 to 1.14 . . . 13

Effect of inboard and outboard elevon deflection on longitudinal aerodynamic
characteristics of plane trapezoid wing configuration at Mach numbers

from 0.40°to 1.14 . . . . . . . . . e e e e e e 14
Effect of twist and camber on longitudinal aerodynamic characteristics of

trapezoid wing configurations at Mach numbers from 0.40to 1.14 . . . . . . . 15
Effect of plane wing planform on variation with Mach number of lift-curve

slope CLa and longitudinal stability parameter 8Cp/6Cy . . . . . . . . . . 16
Effect of plane wing planform on induced drag CD,i at M =0.40, 0.90,

and 1.14 . . . . . . L e e e e e e e 17

Variation with Mach number of elevon effectiveness parameter ag for plane

ogee, delta, and trapezoid wing configurations . . . .. ... ... ... ... 18
Effect of twist and camber on variation with Mach number of longitudinal

stability parameter 8Cy, /8CL for ogee, delta, and trapezoid wing

configurations. . . . . . . . .. L. L L 19
Variation with Mach number of pitching-moment coefficient at zero lift Cp,

for twisted and cambered wing configurations . . . . . . ... ... ... , - 20




) * Figure
Effect of twist and camber on variation with Mach number of lift-curve slope

Cy, for ogee, delta, and trapezoid wing configurations . . . . . . . .. . .. 21
o

Effect of twist and camber on induced drag Cp.i of ogee, delta, and

trapezoid wing configurationsat M=0.90. . . .. ... ... ... ..... 22
Variation of angle of attack with trimmed lift coefficient CLt . at

rim
M = 0.40 and variation of maximum lift-drag ratio (L/D)y,,5 With Mach
NUMDET. . . . . v v v v et e e e e e e e e e e e e e e e e e e e e e e e e 23

Comparison of lateral aerodynamic characteristics of twisted and cambered
wing configurations . . . . . . ... .. L. oL Lo 25

DISCUSSION

Longitudinal Characteristics

Effect of wing planform on longitudinal characteristics.- The effect of plane wing
planform on the variation with Mach number of the lift-curve slope CLa and the longi-
tudinal stability parameter 8Cm/8CL is showr in figure 16. Figure 16 shows that the

plane ogee wing configuration exhibited the largest degree of static longitudinal stability
for the plane wing configurations at a given Mach number as a result of its more rear-
ward location of centroid of exposed area. It should be noted here that the longitudinal
stability parameters for the three wings were based on a constant reference chord. The
maximum variations of longitudinal stability parameters for the ogee and trapezoid wings
when based on the mean aerodynamic chords (table I) were slightly larger than the varia-
tion indicated for the delta planform. The results of reference 32 indicated that at super-
sonic Mach numbers ranging from 1.80 to 2.86 the ogee wing configurations would exhibit
the largest aerodynamic center variation of the three wing planforms.

The lift-curve slopes for the plane trapezoid configuration, as shown in figure 16,
were considerably greater than the lift-curve slopes for the plane ogee and delta wing
ations at Mach numbers higher than 0.40. This effect may be attributed to the
lower sweep (fig. 1(e)), and greater exposed area of the plane trapezoid wing configura-
tion. (It should be noted that all data were nondimensionalized by using the same wing
reference area.)

The effect of plane wing planform on induced drag at Mach numbers of 0.40, 0.90,
and 1.14 are shown in figure 17. The induced drag of the plane trapezoid wing configura-
tion was slightly less than the induced drag for the plane delta and ogee wing configura-
tions throughout the Mach number range of the investigation. This result is as would be



expected since the induced drag of highly swept wing configurations with sharp wing
leading edges is inversely proportional to the lift-curve slope.

Figure 18 presents the variation with Mach number of the elevon effectiveness
parameter ag at a lift coefficient of zero for the three plane wing configurations. As
shown in this figure, deflection of the elevons produces the greatest effective change in
wing angle of attack for the plane ogee wing configuration, particularly in the subsonic
Mach number range. Reference 37 reveals that this effect might be expected since the
ogee configuration has a generally higher flap-chord to wing-chord ratio than the trape-
zoid or delth wing configurations. (See figs. 1(a), (b), and (c).) Figures 8(b), 11(b), and
14(b) indicate, however, that the change in pitching- moment coefficient at zero lift per
degree of inboard and outboard elevon deflection was very nearly the same for the three
plane wing configurations as a result of the comparable elevon locations and areas.

Effect of twist and camber on longitudinal characteristics.- The effects of twist and
camber on the variation with Mach number of the longitudinal stability parameter
8Cm/BCL for the ogee, delta, and trapezoid wing configurations are presented in fig-

ure 19. The maximum aerodynamic center shift occurring for the three wing planform
configurations throughout the Mach number range was very nearly the same for the plane
wing configurations as for the twisted and cambered wing configurations. However, it
will be noted from figure 19 that the longitudinal stability parameters for the twisted and
cambered and the plane trapezoid, and the twisted and cambered and the plane delta, wing
configurations differed considerably near zero lift. The greater stability levels of the
twisted and cambered trapezoid and delta wing configurations, relative to the plane wing
configurations, are presumed due to maintaining unseparated flow conditions to higher
lift coefficients. The plane trapezoid and delta wing configurations apparently experience
leading-edge separation at very low angles of attack in the wing apex region; this separa-
tion would tend to reduce the level of longitudinal stability. For the ogee wing configura-
tions, the difference in stability levels between the twisted and cambered and the plane
wings is much less and is opposite in direction from that for the delta and trapezoid corn-
figurations. The similarity of stability levels exhibited for the ogee wing configurations
suggests that the flow conditions at the leading edges of the plane and the twisted and
warped wings were similar or that the stability levels of the ogee wing configuration were
much less sensitive to differences in flow conditions.

The zero-lift pitching-moment results shown in figure 20 indicate substantially
higher values of pitching-moment coefficient at zero lift Cm,0 throughout the Mach num-
ber range of the investigation for the twisted and cambered trapezoid configuration than
for the twisted and cambered ogee or delta configurations.
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Figure 21 shows that the effect of twist and camber on the variation with Mach num-
ber of the lift-curve slope CLa was not significant for the ogee, delta, or trapezoid
planforms.

The effect of twist and camber on the induced drag of the ogee, delta, and trapezoid
wing configurations at a Mach number of 0.90 is illustrated in figure 22. 1In addition to
the experimental results, computed drag polars for zero and full leading-edge suction are
shown for each planform. The close agreement between the experimental values obtained
for the plane wing configurations and the values of drag for zero leading-edge suction
might be expected due to the sharpness of the leading edges of the wings. These results
indicate that the wing twist and camber of the ogee and delta configurations resulted in
some reduction in induced drag at a Mach number of 0.90 but that only slight differences
existed between the induced drag of the plane and the twisted and cambered trapezoid
wing configurations. The results of the investigation of reference 31, however, indicated
that the wing twist-and camber of the trapezoid configuration resulted in substantial
improvements in the drag characteristics at the design Mach number of 2.20.

Low-speed trimmed lift coefficients and supersonic performance.- The variations
of angle of attack with trimmed lift coefficient at a Mach number of 0.40 and of maximum

lift-drag ratio with Mach numbers ranging from 1.80 to 2.86 are presented in figure 23.
The trimmed lift coefficients shown in figure 23 were determined for the three wing plan-
form configurations at an adjusted longitudinal stability level of 5 percent of the reference
chord and the trimmed Iift data shown for the twisted and camberced wing configurations
were obtained by utilizing the elevon control effectiveness of the plane wing configura-
tions. These results indicate that the effect of wing planform on trimmed lift coefficient
at landing attitudes of about 12° was insignificant. Wing twist and camber, however, are
shown to have a large effect on the trimmed lift coefficients of the three wing planform
configurations. On the basis of the data shown in figure 23, it would be expected that sub-
stantially higher trimmed lift coefficients would be expected for the twisted and cambered
trapezoid configuration near reasonabie landing attitudes than for the twisted and cam-
bered ogee or delta configurations. This effect is attributed to the higher lift-curve slope
and higher values of zero-lift pitching-moment coefficient indicated for the twisted and
cambered trapezoid configuration. In addition, the supersonic results contained in refer-
ences 31 and 32 indicated that the trapezoid configurations exhibited larger maximum lift-
drag ratios than the delta or ogee configurations throughout the supersonic Mach number
range of 1.80 to 2.86. The supersonic results of the aforementioned investigations also
indicated larger pitching-moment coefficients at zero lift for the twisted and cambered
trapezoid configuration than for the twisted and cambered ogee and delta configurations;
these larger coefficients would naturally result in lower trim-drag penalties for the
trapezoid configuration at a given level of longitudinal stability.
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Lateral Characteristics

Variations of the lateral aerodynamic coefficients of the plane ogee wing with side-
slip angle B are presented in figure 24, Figure 25 compares the lateral aerodynamic
characteristics of the twisted and cambered wing configurations throughout the Mach num-
ber range of the investigation.

Directional stability is evident for the three twisted and cambered wing configura-
tions up to high angles of attack for Mach numbers of 0.40 to 1.14. (See fig. 25.) The
static directional stability exhibited by the twisted and cambered delta and trapezoid wing
configurations was very nearly the same and considerably greater than the directional
stability of the twisted and cambered ogee wing configuration. The smaller values of
directional stability indicated for the ogee configuration are presumed to be due in part
to the comparatively forward location of the large twist and camber in the leading edge of
the wing near the root section. (See figs. 3 and 6.)

The effective dihedral parameters indicate static lateral stability for angles of
attack greater than zero degrees for the three twisted and cambered wing configurations
throughout the Mach number range of the investigation.

CONCLUDING REMARKS

A study was made at Mach numbers ranging from 0.40 to 1.14 to determine the aero-
dynamic characteristics of three different wing planforms (ogee, delta, and trapezoid) both
with and without wing twist and camber. The experimental results indicated that the wing
planform differences had only small effects on the aerodynamic center shifts with Mach
number and on the trimmed lift coefficients at landing attiludes. The wing twist and cam-
ber effects, however, were significant and the results indicated that the trapezoid configu-
rations, which had the highest values of pitching-moment coefficient at zero lift, would
exhibit the highest trimmed lift coefficients of the twisted and cambered wing configura-
tions near reasonable landing attitudes.

The static lateral data indicated that the twisted and cambered wing configurations
have positive directional stability and positive effective dihedral throughout the Mach num-
ber range of 0.40 to 1.14. The directional stability, however, of the twisted and cambered
delta and trapezoid configurations was considerably greater than the directional stability
of the twisted and cambered ogee configurations.

Langley Research Center,

National Aeronautics and Space Administration,
Langley Station, Hampton, Va., November 30, 1965.
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Ogee wings:

Aspect ratio

Span

Plane wing wetted area (excludes nacelle area)
Twisted and cambered wing wetted area (excludes nacelle area)
Reference area

Root chord

TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL

[Scale 1/40]

Reference chord . . . . . . . . . . . . . . e e e e e e e e

Delta wings:

Sweep of leading edge
Aspect ratio

Span

Wetted wing area (excludes nacellearea). . . . . . . . . . . . .« . . ..

Reference area

Trapezoid wings:

Sweep of leading edge
Aspect ratio

Span

Wetted wing area (excludes nacellearea). . . . . .. . .. . . . ... ..

Reference area

Root chord
Tip chord

Reference chord

Mean aerodynamic chord . . . . . . . . .. ... .00

Fuselage:
Length . .

Balance chamber area

Vertical tail:
Root chord
Tip chord
Area . . .

Nacelles:
Length . .

Capture area (each)
Base area (each)

19.25 in2
325.18 in2
329.98 in2
239.76 in2

27.78 in.

12.00 in.

16.81 in.

239.76 in2
24,87 in.
12.00 in.
16.56 in.

19.25 in.
344.90 in2
239.76 in2

23.30 in.

1.84 in.

12.00 in,

15.46 in.

42.50 in.
2.40 in2

7.64 in.
2.40 in.
21.64 in2

10.25 in.
1.04 in2
0.96 in2

1.55

48.90 cm?2)
(2097.93 cm?2)
(2128.90 cm2)
(1546.84 cm?2)

( 70.56 cm)
( 30.48 cm)
( 42.70 cm)
68°
1.55
( 48.90 cm)

(21617.35 cm?2)
(1546.84 cm?2)

( 63.17 cm)
( 30.48 cm)
(  42.06 cm)
65°
1.55

(  48.90 cm)
(2225.16 cm?2)
(1546.84 cm?2)

( 59.18 cm)
( 4.67 cm)
( 30.48 cm)
( 39.27 cm)

( 107.95 cm)
( 15.48 cm2)

( 19.48 cm)
(  6.10 cm)
( 139.61 cm?2)

( 26.04 cm)
( 6.71 cm?)
(  6.19 cm?)
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(c} Variation of Cp with Cj.
Figure 7.- Concluded.
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(b) variation of Cry with Cp.

Figure 9.- Continued.
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(¢} Variation of Cp, with Cl

Figure 9.- Concluded.
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Figure 10.-
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Figure 12.- Effect of twist and camber on longitudinal aerodynamic characteristics of delta wing configurations at Mach numbers from 0.40 to 1.14.
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